
Towards Designing and Learning
Piecewise Space-Filling Curves

Jiangneng Li1, Zheng Wang1, Gao Cong1, Cheng Long1, Han Mao Kiah1,
and Bin Cui2

1

1Nanyang Technological University 2Peking University

Introduction
The motivation and our idea

2

• A SFC is used to map a multi-dimensional data point to a value
• Then a one-dimensional index can be used to index the mapped

values
• B+tree index, supported by many DBMS, such as PostgreSQL,

DynamoDB, HBase
• Learned indexes

3

Space-Filling Curve (SFC)

(a) C-curve (b) Z-curve (c) Hilbert curve(a) C-curve (b) Z-curve (c) Hilbert curve

• Each type of SFC has its
own fixed mapping
function

• Cannot be adjusted to
fit with different datasets.

• No single SFC can dominate the performance on all datasets and
query workloads

4

Design instance-optimized SFCs

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

𝑄! 𝑄" 𝑄! 𝑄"

(a) SFC-1 works best for 𝑄!. (b) SFC-2 works best for 𝑄".

• Design a SFC that combining the advantage of multiple SFCs and thus
reach to an optimized performance

5

Our Idea

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1 2

3 4

5 6

7 8

9

10

11

12

13

14

15

16

𝑄! 𝑄" 𝑄! 𝑄" 𝑄! 𝑄"

(a) SFC-1 works best for 𝑄!. (b) SFC-2 works best for 𝑄". (c) SFC-3 combines SFC-1 and SFC-
2, works best for both queries.

• Database 𝐷
• Each data point 𝐱 ∈ 𝐷, has 𝑛 dimensions, denoted by 𝐱 = (𝑑", 𝑑#, . . . , 𝑑$)

• Query Workload 𝑄
• Each query 𝑞 ∈ 𝑄, 𝑞 = (𝑥%&', 𝑦%&', 𝑥%(), 𝑦%())

• Space-Filling Curve Design for Query Processing
• Given a database 𝐷 and a query workload 𝑄, we aim to develop a mapping

function 𝑇, which maps each data point 𝐱 ∈ 𝐷 into an SFC value 𝑣, s.t. with an
index structure (e.g., B+ Tree) built on the SFC values of data points in 𝐷, the
query performance (e.g., I/O and query latency) on 𝑄 is optimized.

6

Problem Statement

Our Method

7

• The bit merging pattern describes a set of bit merging-based SFCs.
• Idea: The input data is first written as the binary form, then merge the bit

according to the pattern (e.g., XYXY)

8

Bit Merging Pattern (BMP) [1]

(10)(11)

11012

% = (10!, 11!)

("! = 1101!

P# = XYXY
(10)(11)

10112

("" = 1011!

P$ = XXYY
(10)(11)

11102

("# = 1110!

P! = XYYX

[1] Shoji Nishimura and Haruo Yokota. 2017. QUILTS: Multidimensional Data Partitioning Framework Based on Query-Aware
and Skew-Tolerant Space-Filling Curves. SIGMOD2017

• Two preferred properties for an SFC mapping 𝑇: 𝐱 → 𝑣
• Injection property:

∀𝐱" ≠ 𝐱#, 𝑇 𝐱" ≠ 𝑇(𝐱#)
• Monotonicity property:

𝐱* = {𝑏"* , … , 𝑏$* }
𝐱** = {𝑏"**, … , 𝑏$**}

 If 𝑑+* 	≥ 	𝑑+**	is satisfied for ∀𝑖	 ∈ 	 [1, 𝑛]:
𝑇	(𝐱*) 	≥ 	𝑇	(𝐱**)

10

Desired Properties

Monotonicity is desirable for designing window query algorithms:
It guarantees that the SFC values of data points in a query rectangle fall in the range of
the SFC values formed by two boundary points of the query rectangle

1. How to partition the space and design an effective BMP for each
subspace?

2. How to design piecewise SFCs such that two desirable properties
hold?

3. How to design a data-driven approach to build the piecewise SFC,
given a database and query workload?

11

Design Challenges

• We propose a way of seamlessly integrating the subspace partitioning
and BMP generation while ensuring the desired properties.

12

Piecewise SFC Design

(01)(01)

00112

%! = 0011"

P# = XYXY
(10)(01)

10012

%$ = 1001"

P" = XXYY

*# *"
+ = (01", 01") - = (10", 01")

.# = 0 .# = 1

(a) Example of Piecewise SFC Design.

• We follow the left-to-right BMP design, and
start with an empty string P, then we choose
a bit X.

• Then the whole data space is partitioned
into two subspaces w.r.t. the value of bit 𝑥",
where one subspace corresponds to 𝑥" =
0	(resp. 𝑥" = 1).

• This partitioning enables us to separately
design different BMPs for the two
subspaces (𝑆" and 𝑆#).

• We propose a way of seamlessly integrating the subspace partitioning
and BMP generation while ensuring the desired properties.

13

Piecewise SFC Design

(01)(01)

00112

%! = 0011"

P# = XYXY
(10)(01)

10012

%$ = 1001"

P" = XXYY

*# *"
+ = (01", 01") - = (10", 01")

.# = 0 .# = 1

(a) Example of Piecewise SFC Design.

• We follow the left-to-right BMP design, and
start with an empty string P, then we choose
a bit X.

• Then the whole data space is partitioned
into two subspaces w.r.t. the value of bit 𝑥",
where one subspace corresponds to 𝑥" =
0	(resp. 𝑥" = 1).

• This partitioning enables us to separately
design different BMPs for the two
subspaces (𝑆" and 𝑆#).

• We propose a way of seamlessly integrating the subspace partitioning
and BMP generation while ensuring the desired properties.

14

Piecewise SFC Design

(01)(01)

00112

%! = 0011"

P# = XYXY
(10)(01)

10012

%$ = 1001"

P" = XXYY

*# *"
+ = (01", 01") - = (10", 01")

.# = 0 .# = 1

(a) Example of Piecewise SFC Design.

• We follow the left-to-right BMP design, and
start with an empty string P, then we choose
a bit X.

• Then the whole data space is partitioned
into two subspaces w.r.t. the value of bit 𝑥",
where one subspace corresponds to 𝑥" =
0	(resp. 𝑥" = 1).

• This partitioning enables us to separately
design different BMPs for the two
subspaces (𝑆" and 𝑆#).

(01)(01)

00112

%! = 0011"

P# = XYXY
(10)(01)

10012

%$ = 1001"

P" = XXYY

*# *"
+ = (01", 01") - = (10", 01")

.# = 0 .# = 1

15

Piecewise SFC Design

(a) Example of Piecewise SFC Design.

• We propose a way of seamlessly integrating the subspace partitioning
and BMP generation while ensuring the desired properties.

• We follow the left-to-right BMP design, and
start with an empty string P, then we choose
a bit X.

• Then the whole data space is partitioned
into two subspaces w.r.t. the value of bit 𝑥",
where one subspace corresponds to 𝑥" =
0	(resp. 𝑥" = 1).

• This partitioning enables us to separately
design different BMPs for the two
subspaces (𝑆" and 𝑆#).

• The BMTree is to model the partition and BMP design information of
a piecewise SFC.

16

Bit Merging Tree (BMTree)

!!
"! !"

!" !" "! "!

"" "" "" "" "" "" "" ""

$

0

0

1

0011" 1001"
P! = XYXY
P" = XXYY

1

1

0

0

1

(a) Example of Piecewise SFC Design. (b) Example of BMTree Structure.

(01)(01)

00112

%! = 0011"

P# = XYXY
(10)(01)

10012

%$ = 1001"

P" = XXYY

*# *"
+ = (01", 01") - = (10", 01")

.# = 0 .# = 1

• The BMTree is to model the partition and BMP design information of
a piecewise SFC.

17

Bit Merging Tree (BMTree)

!!
"! !"

!" !" "! "!

"" "" "" "" "" "" "" ""

$

0

0

1

0011" 1001"
P! = XYXY
P" = XXYY

1

1

0

0

1

(a) Example of Piecewise SFC Design. (b) Example of BMTree Structure.

(01)(01)

00112

%! = 0011"

P# = XYXY
(10)(01)

10012

%$ = 1001"

P" = XXYY

*# *"
+ = (01", 01") - = (10", 01")

.# = 0 .# = 1

• The BMTree is to model the partition and BMP design information of
a piecewise SFC.

18

Bit Merging Tree (BMTree)

!!
"! !"

!" !" "! "!

"" "" "" "" "" "" "" ""

$

0

0

1

0011" 1001"
P! = XYXY
P" = XXYY

1

1

0

0

1

(a) Example of Piecewise SFC Design. (b) Example of BMTree Structure.

(01)(01)

00112

%! = 0011"

P# = XYXY
(10)(01)

10012

%$ = 1001"

P" = XXYY

*# *"
+ = (01", 01") - = (10", 01")

.# = 0 .# = 1

• We model the SFC design procedure as the BMTree construction
procedure.

• During the BMTree construction, each time we fill one level of BMTree with
the selected bits, which also partition more subspaces and generate the next
level of leaf nodes.

19

BMTree Construction

𝑥!

(1) BMTree whose root node
is filled with 𝒙𝟏

(2) Possible bit choices to fill
the two leaf nodes

1. Left: 𝑥", Right: 𝑥"
2. Left: 𝑥", Right: 𝑦!
3. Left: 𝑦!, Right 𝑥"
4. Left: 𝑦!, Right 𝑦!

• We model the SFC design procedure as the BMTree construction
procedure.

• During the BMTree construction, each time we fill one level of BMTree with
the selected bits, which also partition more subspaces and generate the next
level of leaf nodes.

20

BMTree Construction

𝑥!

(1) BMTree whose root node
is filled with 𝒙𝟏

(2) Possible bit choices to fill
the two leaf nodes

1. Left: 𝑥", Right: 𝑥"
2. Left: 𝑥", Right: 𝑦!
3. Left: 𝑦!, Right 𝑥"
4. Left: 𝑦!, Right 𝑦!

• We model the SFC design procedure as the BMTree construction
procedure.

• During the BMTree construction, each time we fill one level of BMTree with
the selected bits, which also partition more subspaces and generate the next
level of leaf nodes.

21

BMTree Construction

𝑥" 𝑦!

𝑥!

(3) BMTree constructed one
level deeper

𝑥!

(1) BMTree whose root node
is filled with 𝒙𝟏

(2) Possible bit choices to fill
the two leaf nodes

1. Left: 𝑥", Right: 𝑥"
2. Left: 𝑥", Right: 𝑦!
3. Left: 𝑦!, Right 𝑥"
4. Left: 𝑦!, Right 𝑦!

• We model the SFC design procedure as the BMTree construction
procedure.

• During the BMTree construction, each time we fill one level of BMTree with
the selected bits, which also partition more subspaces and generate the next
level of leaf nodes.

22

BMTree Construction

𝑥" 𝑦!

𝑥!

(3) BMTree constructed one
level deeper

𝑥!

(1) BMTree whose root node
is filled with 𝒙𝟏

(2) Possible bit choices to fill
the two leaf nodes

1. Left: 𝑥", Right: 𝑥"
2. Left: 𝑥", Right: 𝑦!
3. Left: 𝑦!, Right 𝑥"
4. Left: 𝑦!, Right 𝑦!

𝑦!

𝑦" P=XXYY

• The reason why use reinforcement learning:
• Heuristic methods are difficult to be designed to construct BMTree to

optimize the query performance for a workload on a database instance.
• Utilizing reinforcement learning could directly optimize the BMTree based on

the reward.

23

Use Reinforcement Learning to construct BMTree

• We leverage Monte Carlo Tree Search method to help constructing
BMTree.

24

MCTS based BMTree Construction

X Y

X

S1:X, V1 S2:Y, V2

Root

S4:XX, V4S3:XY, V3

S5:XXYY, V5 S6:XYYX, V6

Rollouts on the policy tree

S7 S8 S9 S10

S1:X, V1’ S2:Y, V2

Root

S4:XX, V4S3:XY, V3’

S5:XXYY, V5’ S6:XYYX, V6’

S7 S8 S9 S10: V10

(4) backpropagation

X Y

X

X Y Y X

MCTS Action Selection for Constructing One Level of BMTreeInput
Partially constructed BMTree

Reward Generator

Rew = %SRZ q, D − SRT(q, D)
!∈#

Output

node to be filled path selection value backpropagation

current state

BMTree constructed one
level deeper

Choose(S3)
= S6: XYYX, V6’

Select Action

(1) selection and (2) expansion

(3) simulation

repeat rollout

SR

Experiment

25

• Experiment on PostgreSQL.

26

Comparing between SFCs

UNI SKE GAU UNI SKE GAU
0

0.5

1

⇥103

UNI GAU

I/O Cost

Z-curve QUILTS BMTree

UNI SKE GAU
0

2

4

6

8

⇥104

OSM-US

UNI SKE GAU

1

2

⇥103

TIGER

UNI SKE GAU UNI SKE GAU
0

1

2

⇥104

UNI GAU

Query Latency (µs)

Z-curve QUILTS BMTree

UNI SKE GAU
0

0.5

1

1.5
⇥106

OSM-US

UNI SKE GAU
0

2

4

⇥104

TIGER

(a) I/O Cost (b) Query Latency

• Experiment on RSMI [2] (a learned index).

27

Comparing between SFCs

UNI SKE GAU UNI SKE GAU
0

1

2

3

⇥102

UNI GAU

Node Access

Z-curve Hibert QUILTS
BMTree

UNI SKE GAU
0

1

2

⇥104

OSM-US
UNI SKE GAU

0

0.5

1

1.5

2
⇥102

TIGER
UNI SKE GAU UNI SKE GAU

0

2

4

6
⇥102

UNI GAU

Query Latency (µs)

Z-curve Hibert QUILTS
BMTree

UNI SKE GAU
0

2

4

⇥104

OSM-US
UNI SKE GAU

0

0.5

1

1.5

2
⇥102

TIGER

(a) Node Access (b) Query Latency

[2] Jianzhong Qi, Guanli Liu, Christian S. Jensen, and Lars Kulik. 2020. Effectively Learning Spatial Indices.

• Comparing traditional spatial indexes with BMTree-enhanced one-
dimensional indexes

28

Comparing between indexes

STR R* Tree Grid Quad-Tree ZM ZM+BMTree RSMI RSMI+BMTree

UNI SKE GAU UNI SKE GAU
0

100

200

300

400

UNI GAU

Query Latency (µs)

UNI SKE GAU
0

1

2

3
⇥104

OSM-US

UNI SKE GAU
0

2

4

6

8
⇥102

TIGER

• Why the idea of piecewise SFC would work
• The design of the BMTree considered a SFC set with a large size, which

inherently contains a better SFC.
• The idea of piecewise enables the policy to adapt the mapping schemes of

subspaces depending on the specific database instance situation.

29

Conclusion and Takeaways

Thank you
Questions?

30

